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Lepton flavor changing in neutrinoless 7 decays
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Abstract. Neutrino oscillations, as recently reported by the Super-Kamiokande collaboration, imply that
lepton numbers could be violated, and 7 — p& + 07 + 07, 7% — u* + p° are some typical examples. We
point out that in these neutrinoless modes, the GIM cancelation is much milder with only a logarithmic
behavior log(m;/my) where m; are the neutrino masses. This is in sharp contrast with the vanishingly
small amplitude S ui + ~ strongly suppressed by the quadratic power (m2~ - mﬁ)/M\Q;V In comparison
with the hopelessly small branching ratio B(rF — p& ++) ~ 107%°, the B(Tﬂz — pT 07 +¢7) could be
larger than 10™'*. The latter mode, if measurable, could give one more constraint to the lepton mixing
angle sin 20, and the neutrino mass ratio m;/ms, and therefore is complementary to neutrino oscillation

experiments.

Evidence for the transmutation between the two neutrino
species v,, <+ v, is recently reported by the Super-Kamio-
kande collaboration”). As a consequence, neutrinos could
have nondegenerate tiny masses and lepton numbers would
no longer be conserved. Hence, besides the well known
neutrino oscillation phenomena, neutrinoless 7 decays,
such as 7+ — pt 4, 75 = pF 4040~ and 7 — pt4+p0
could occur.

The interest of the 7+ — y* + /T + ¢~ and/or 7% —
put + p° modes is twofold. First, contrarily to the radia-
tive case 7 — p* 4 4 which is damped by a vanish-
ingly quadratic power [2], the typical lepton flavor chang-
ing amplitude 7+ — p* 4 £F + 47 (or 7t = pt 4 pY)
is only suppressed by a smooth logarithmic term. Second,
these 7 decay modes, if measurable, are complementary
to the neutrino oscillation experiments. They could give
— besides the lepton mixing angle ;; — the ratio m?/m%,
whereas neutrino oscillations give the difference [m? —mZ|.
By combining them, the absolute value of m; could be de-
termined in principle.

Similarly to the CKM flavor mixing in the quark sec-
tor, let us assume that the neutrino gauge-interaction ei-
genstates v, v, and v; are linear combinations of the
three neutrino mass eigenstates vy, 5 and v3 of nonzero
and nondegenerate masses mi, ms and mg respectively.

Thus
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where the 3 X 3 matrix U, is unitary. Neutrino oscilla-
tion measurements give constraints usually plotted in the
(sin20, Am* = |m? — m3|) plane, where § is one of the
three Euler angles of the rotation matrix Uep -
The weak interaction effective Lagrangian for charged
current of leptons can be written as

G
Eeff = JL;LX ’

V2
where the charged current L) is

3
Ly =Y tya(1=)v;Us; .

Jj=1

Here ¢ stands for e”, p=, 7~ and v; (with j = 1,2,3)
are the three neutrino mass eigenstates. For any fixed ¢,
one has } |U¢j|? = 1. For instance the v, operationally

defined to be the invisible particle missing in the 7+ —
pt+wv,, is initially a superposition of v1, v5 and v, in the
same way as the K meson produced by strong interaction,
say by 7~ +p — K 4 A, is initially a superposition of
the mass eigenstates K? and K$ with masses my, # msg.
The nondegenerate masses are the origin of the oscillation
phenomena for both neutrinos and neutral K mesons.

In the most general renormalizable R¢ gauge, at one
loop level to order g* — where g = e/sinfyy is the weak
interaction coupling constant — there are in all eighteen
Feynman diagrams contributing to the neutrinoless de-
cays 7t — put 40T + 07 or 7t — pu* 4 p¥; these modes
are mediated by the Z and the photon, ten diagrams for
the virtual Z, and eight for the virtual . Three of them
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Fig. 2. One-loop flavor changing 7 — p+ 47 + £~

are depicted in Figs.1-3. The fifteen others, not shown
here, are similar to Figs.1-3 in which the internal W+
in loops are replaced in all possible ways by the ”would
be” Goldstone bosons &+, those absorbed by the gauge
bosons W+ to render them massive by the Higgs mecha-
nism. The intermediate virtual photon is absent in Fig. 1
and in Fig. 1 bis which is the analogue (not depicted here)
of Fig.1 with W replaced by &*. The contributions of
the mediated neutral Higgs boson H° are negligibly small
for both reasons (its mass and its couplings with the lep-
ton ¢ pair or the up down quarks of the p°) and can be
discarded.

A careful examination of these eighteen diagrams
shows that only Fig.1 and Fig.1 bis provide the loga-
rithmic behavior log(m? /M), while the contributions of
all other 16 diagrams are power suppressed as (m? /ME),
(m3 /M) x log(m? /M) and therefore vanishingly small.
The principal reason for the appearance of the logarith-
mic log(m7 /M) term is that we are dealing in Fig. 1 and
Fig. 1 bis with two propagators of nearly massless fermions
for which if the momentum transfer ¢? is much smaller
than M3, and consequently neglected, infrared divergen-
ces appear when mass of the internal fermion goes to zero
[3, 4]. We emphasize that Fig. 1 and Fig. 1bis are the only
ones that contain an infrared divergence log(m3/Mg),
this fact has been noticed a longtime ago in different con-
texts, for instance in the computation of the slope of the
neutrino electromagnetic form factor [3], and the s-d- in-
duced coupling [4]. Note however that compared to Fig. 1,
the contribution of Fig. 1bis is damped by an additional
Mm/M3, factor because of the @-fermion couplings,
where M and m are respectively the 7 lepton and muon
masses. So actually only Fig. 1 dominates.

Due to the unitarity of Ui, reflecting the GIM can-
celation mechanism, the divergence as well as the m;-
independent finite part of the loop integral do not con-
tribute to the decay amplitude because they are multi-
plied by 3, (U;;Ur;) = 0 when we sum over all the three
neutrino contributions. Only the m -dependent finite part
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Fig. 3. One-loop flavor changing 7 — pu + £+ + £~

of the loop integral is relevant. This point is crucial, im-
plying that we cannot neglect m; no matter how small m;
is, otherwise we would get identically zero result after the
summation over the neutrino species j.

Our first task is to show that Fig. 1 and Fig. 1bis actu-
ally give rises to the logarithmic log(m? /M3;) term. This
term could be equally guessed by approximating the W
propagator with /Mg, the W mass plays the role of the
loop integral momentum cutoff. Hence Fig.1 looks like
the familiar fermionic loop of the gauge boson self energy,
or vacuum polarization. When ¢? = 0 (g being the four-
momentum of the external gauge boson), the standard
log(m3/u?) appears [5]. The following calculation of the
diagram of Fig. 1 confirms this expectation.

Let us write the one-loop effective 7—pu—7 transition of
Fig. 1 as u(p)I'}*(¢*)u(P)ex(q), where P, p and ¢ = P —p
are respectively the four-momentum of the 7 lepton, muon
and virtual boson Z. Thus

3~ cae) (1) s | o

where

A
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The £ dependence in the W propagator of Fig. 1 is canceled
by the £ dependence of Fig. 1bis (where @ replaces W), so
for simplicity, we take the £ = 1 Feynman—"t Hooft gauge
at the outset.

Inserting I77*(¢?) inside u(p) and u(P), making use of
Dirac equations for these spinors and adopting the stan-
dard Feynman paramerization for the denominator in
Yj)‘(k:, q), we get after the k integration

N U U* / /1 x N)\ 2)
i) = 647r2 cos GW q?) "’ )
where
P A
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P—i—p)\ q)\
%(1 —75) + EM(l +5)

q)\
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Dj(q*) = = [My — M*(1 -z —y) — m?y]

"yl —z —y) +mj(1 - 2). (5)
The form factors a,---, f are
D; 2
a="Djlog 5 | + M z(z+y)
My

+me(l—y) - ¢ (@ +y)(1-vy),
b=Mmz, c=—M*z(z+7)
d=Mmaz(1+vy), e=—M?(z+y)(z+2y—2),
f=Mmlz(1+y)—2y(1-y)]. (6)

The log(D; /M%) in (6) is the finite part extracted from
D;°I'(¢) = [1—elog(D;/My)] I (¢) where ¢ = 2—(n/2) is
the n-dimensional regularization parameter used to han-
dle the ultraviolet divergence of (2). As discussed, the j-
dependence in D;(¢?) as given by (5) is crucial to get
nonzero result. On the other hand, since the j-independent
terms ¢?y(1 —x —y) < ¢*/4 < (M —m)?/4 < My
is much smaller than M3, it is useful to make an ex-
pansion of I'}(¢?) in power of n = ¢*/Mg by writing
D;(¢*) = D;(0) + O(n), where

D;(0) = x [M3, —m? — M*(1 —x —y) —m?y] +m?. (7)

This n expansion simplifies the z, y integrations and shows
us that the relevent j-dependent part of I j>‘ (¢%) has the
following general form (the Lorentz index A is omitted for
simplicity) :

Ii(q*) = (An + B)F(n,m;) + G(my), (8)

where A, B are constant, and most importantly we note
that F(0,m;) = logd;, with §; = m3/Mg;. The second
term G(m;) only contains d;, d;logd; and 67 logd; terms
which are negligible for m; — 0.

The general structure in (8) emerges after the x, y inte-
grations of (4), using (7). This dominant log §; manifests
itself from the lower limit = 0 of the [ [ dzdy [1/D;(0)]
integration. Note that [ [dazdy [1/D;(0)] gives logd;,
while [ [dzdy [2"/D;(0)] gives 6} logd;. Therefore, if
there exists terms independent of = in the numerator N
(¢%), then these z-independent terms will lead to logd;.
There are actually three z-independent terms in N*(g?)
— those proportional to y(1 — y) — localized in the form
factors a, e and f which give rise the logd; after the
[ [ dzdy [N*(¢?)/D;(0)] integration. The constant A in
(8) comes from the form factor a and the constant B from
the form factors e, f. The a-dependent terms in N (¢?)
yield 65, 6;log d; and 5J2» log §; terms, they are grouped into
G(my).

The presence of this infrared divergence log ¢; from di-
agrams similar to Fig. 1 has been noticed in the literature
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[3, 4]. We remark that the ¢?y(1 — y) term (and not the
log(D;(q*)/M3;)) in the form factor a of (5) which yields
the important logd;. The form factors e and f on the
other hand, because of their ¢* operator, contribute neg-
ligibly when contracted to the lepton pair £7¢~ current.
The dominant term of I';(¢?) is found to be

IMe*) = g’ i
J 6472 cos Oy | 6M

2

m
x <UTjUij log Nfév) PL=7s5).  (9)

From (9), the 7 — pu + ¢+ + ¢~ decay amplitude is

_ Gr a
A )y =2 ——
(Tt \/5(247rsin29w>
(M —m)?

% MZ; — (M —m)? cos? Oy

< [ > UU; logd; | LM
J

L)\

= u(p)y* (1 = 7s)u(P),
O =a(k-)ya(gv — 1594)v(ky),
1 ) -1
gV:7+251n29W,gA=7 (11)

For A(1 — pu+p°), we simply replace £\ by m, f,ex where
f» = 150 MeV is the decay constant of the pY, extracted
from p° — e 4+ e~, and ¢, is the p° polarization vector.
It remains to evaluate

3 m2
_ * J
j=1
3 2
* m
= Z UTkUp,k IOg <§>
k=2 M

where we have used >, Uy ;Urj = 0 to get rid of the first
vy mixing parameter U, Ur1. The factor B in (12) which
represents the soft GIM cancelation tells us that when m;
are degenerate, the lepton flavor mixing does not occur
and the neutrinoless-7 decays identically vanish.

To estimate B, let us assume(®) the following form of
the Uiep, neglecting possible CP violation in the lepton
sector:

(12)

cos 012 —sin 69 0
Unep = % sin 612 % cos B2 ;—% (13)
% sin 012 % cos 015 %

The mixing angle f23 ~ 45° is suggested by the Super-
Kamiokande data and the 613 ~ 0° comes from the Chooz
data(®) which give 63 < 13°, whereas 015 being arbitrary.
Thus,

B = cos? 015 log m2 +sin? 05 log m .
m

(14)
3 m3
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Although 615 is likely small ~ 0%, however the maximal
mixing 612 ~ 45° may be also possible allowing ve ¢ v,
(as suggested by the LSND experiment). Taking 615 in
the range 0°-45°, and using(X%) Am3, = |m3 — mi| =
2 x 1073 eV2, m3 ~ 5 x 1072 eV, then |BJ? is of order
of unity [|[B]*> ~ O(1)], it could be bigger if m; or ma
are exponentially smaller than ms. We get the branching
ratio

B(r = p+ 0T 4+07)>10"1". (15)

Although (15) is still very small, however compared to
the radiative case 7 — u + 7, it represents a spectacu-
lar enhancement through the mild GIM cancelation. Fi-
nally, we remark that for large ¢> > M, for instance in
Z— pu* 4+ 7T, we have the same ten diagrams with a real
Z boson. However, obviously the ¢ = M2 expansion does
not make sense, and F(M2,m;) in (8) cannot be approx-
imated by F(0,m;) = logd,. Only for small ¢* < M3
that the use of the dominant term F'(0,m;) can be justi-
fied. Therefore the low energy et +e~ — p* +77 reaction
might be also worth to investigate. However compared to
the one-photon exchange e™ +e~ — u™+pu~ cross-section,
the et + e~ — u* 4+ 7F cross-section is damped, besides
the coefficient Baen, /247 sin? Ow squared, by an additional
52 /(M2 — s)? multiplicative factor due to the Z propaga-
tor.

Independently of the precise numerical value of B, the
neutrinoless decay modes 7 — p + p® and/or T — u +
£T 4+ ¢~ are interesting on their own right for two reasons.
First, although being higher order loop effect, the branch-
ing ratios are not desperately small due to the smoothly
logarithmic GIM suppression. Second, while neutrino os-
cillations only provide the mass difference Am?k, lepton
flavor changing T decays give the ratio m? /m37. When com-
bining these two processes, the absolute value of the neu-
trino mass m; may be obtained. Both reactions are mutu-
ally complementary in the determination of the neutrino
masses and the lepton mixing angles.
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Lepton flavor changing processes in the seesaw-type
neutrino models are also discussed in [7].
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